Search results for "spectral compression"

showing 4 items of 4 documents

Spectral compression of optical parabolic similaritons

2007

We numerically investigate the spectral recompression experienced by a self-similar parabolic pulse with an anormal initial chirp. Spectral compression factors above 10 and high-quality output pulses can be predicted.

PhysicsOpticsbusiness.industrySpectral compressionChirpGeneral Physics and AstronomybusinessPulse (physics)Annales de Physique
researchProduct

Nonlinear spectral compression in optical fiber: A new tool for processing degraded signals

2017

International audience; We propose two new applications of the spectral focusing by self-phase modulation that occurs in a nonlinear optical fiber. We numerically show the possibility of using nonlinear spectral compression to improve the optical signal to noise ratio and mitigate the amplitude jitter of the signal pulses. We also demonstrate experimentally that use of spectral focusing in a combination with an external sinusoidal phase modulation achieves efficient suppression of coherent spectral background.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Polarization-maintaining optical fiber02 engineering and technologyOptical modulation amplitudeOptical time-domain reflectometer01 natural sciencesSignallaw.invention010309 optics020210 optoelectronics & photonicsSignal-to-noise ratioOpticslawNonlinear fiber optics0103 physical sciences0202 electrical engineering electronic engineering information engineeringsignal processingJitterPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryspectral compressionbusinessPhase modulationOptical attenuator
researchProduct

Enhanced nonlinear spectral compression in fibre by external sinusoidal phase modulation

2016

International audience; We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fibre. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.

Materials scienceOptical fiberChirp spread spectrum02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsQuality (physics)OpticsSide lobelaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringChirpSpectral compressionphase modulation[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)Nonlinear systemnonlinear propagationoptical fibrebusinessPhase modulation
researchProduct

Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

2018

International audience; We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

Femtosecond pulse shapingOptical fiberMaterials scienceGaussianNonlinear spectral compression02 engineering and technologynonlinear fiber optics01 natural scienceslaw.invention010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic Engineering[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPulse shapingAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)Nonlinear systemsymbolsbusinessUltrashort pulseBandwidth-limited pulsepulse shaping
researchProduct